
Transition-Based Parsing with Multiword Expressions

Joakim Nivre, Uppsala University, WG3

Statistical Dependency Parsing

• Map sentences to dependency trees

• Learn mapping from (labeled) corpora

• Approaches

– Graph-based – score trees, factored into subgraphs
– Transition-based – score derivations, factored into transitions

• The spanning tree assumption

– Input is a sequence of tokens w1 · · ·wn

– Output is a spanning tree over input tokens
– Every input token is a tree node (and vice versa)

• Problematic for MWEs (and many other phenomena)

Examples

French du = de le 1:m
French à cause de = à-cause-de m:1
French à cause du = à-cause-de le m:n

Transition-Based Parsing

• Transition system

– Abstract state machine for deriving dependency trees
– Configurations = parser states
– Transitions = parser actions

• Scoring model

– Statistical model for scoring transitions out of a configuration
– Usually a linear model learned from treebank derivations

• Search algorithm

– Algorithm for finding the optimal sequence of transitions
– Usually approximate search (greedy search, beam search)

Arc-Standard Transition System

Configuration: (S,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: (–, w1 · · ·wn, { })

Terminal: (w, –, A)

Shift: (S,w|B,A)) (S|w,B,A)

Right-Arc: (S|w|w0, B,A)) (S|w,B,A[w ! w0])

Left-Arc: (S|w|w0, B,A)) (S|w0, B,A[w0 ! w])

Example Derivation

Transition Stack Buffer Arcs

– she found the word
Shift she found the word
Shift she found the word
Left-Arc found the word found ! she
Shift found the word
Shift found the word –
Left-Arc found word – word ! the
Right-Arc found – found ! word

Adding Multiword Expressions

• Multiword expressions can be encoded as pseudo-dependencies

– Structure is (often) arbitrary
– Dependency tree features are uninformative
– Lexical features are potentially misleading

by and large

mwe mwe

by and large

mwe mwe

by and large

mwe

mwe

• New approach

– Integrate MWE recognition into parsing
– Make a distinction between input tokens and tree nodes
– Add transitions to merge tokens into MWEs

VPC Example

she looked-up the word

nsubj

dobj

det

A New Transition System

• Tree nodes and input tokens are now different

– Tree nodes are lists of input tokens
– The buffer B holds input tokens
– The stack S holds tree nodes

• There are two transitions for consuming tokens from the buffer

– Shift adds the next token to a new singleton list on the stack
– Chunk appends the next token to the list on top of the stack

• Multiword expressions can be treated as first-class citizens

– Can enter directly into dependency relations
– Can have holistic features distinct from their components

New Transition System

Configuration: (S,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: (–, w1 · · ·wn, { })

Terminal: (v, –, A)

Shift: (S,w|B,A)) (S|[w], B,A)

Chunk: (S|u,w|B,A)) (S|[u|w], B,A)

Right-Arc: (S|u|v,B,A)) (S|u,B,A[u ! v])

Left-Arc: (S|u|v,B,A)) (S|v,B,A[v ! u])

Example Derivation

Transition Stack Buffer Arcs

– she looked up the word
Shift [she] looked up the word
Shift [she] [looked] up the word
Chunk [she] [looked up] the word
Left-Arc [looked up] the word [looked up] ! [she]
Shift [looked up] [the] word
Shift [looked up] [the] [word] –
Left-Arc [looked up] [word] – [word] ! [the]
Right-Arc [looked up] – [looked up] ! [word]

