Towards the Cross-Roads of MWE Identification and Tree Correction [WG 4-2-3]

Université François-Rabelais Tours, Blois, France

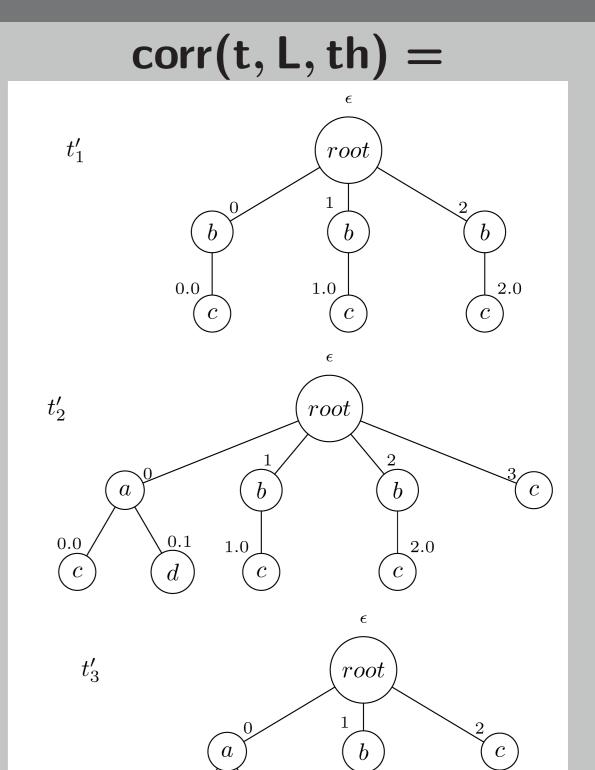
Challenge: variability of MWEs

orthographic

 \triangleright to see the color of sb's money \rightarrow to see the colour ..., morphological

 \triangleright image converters, image conversion \rightarrow image converter, ► syntactic

 \triangleright the beens have been spilled \rightarrow to spill the beans, lexical semantic


 \triangleright (FR) se fourrer le doigt dans l'oeil \rightarrow se mettre le doigt dans l'oeil

(lit.) 'to put one's finger in one's eye' = 'to cherish illusions'

Tree-to-language correction – example

Agata Savary

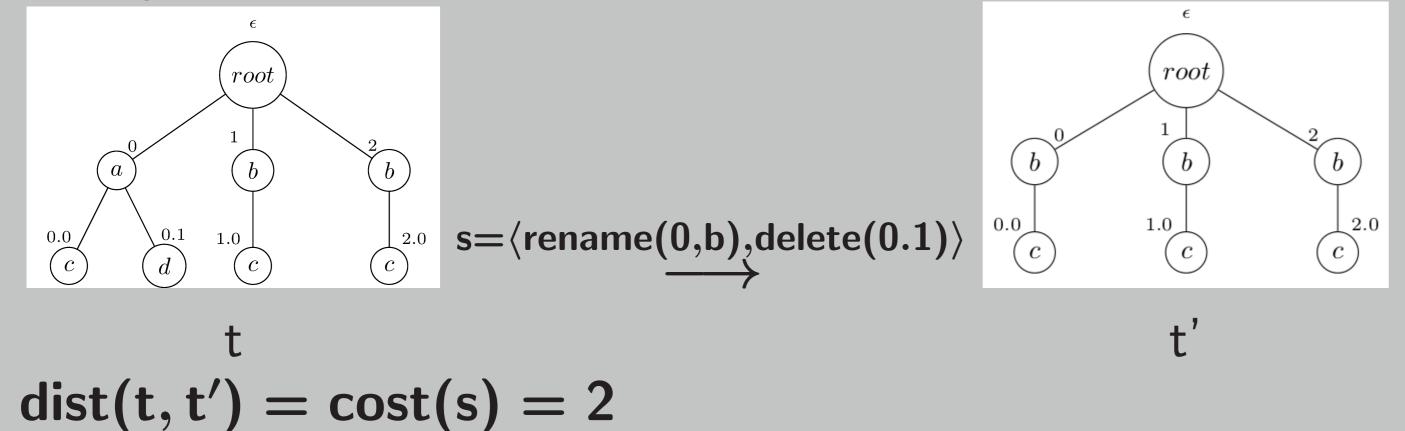
th = 2 $\mathsf{DTD}(\mathsf{L}) = \{\mathsf{root} \to \mathsf{b}^* | \mathsf{ab}^*\mathsf{c},$ $a \rightarrow cd$, $\mathbf{b} \rightarrow \mathbf{c}$, $\mathbf{c} \rightarrow \epsilon$, $d \rightarrow \epsilon$ root 0.0 $\mathbf{t} \notin \mathbf{L} = \qquad \stackrel{\mathbf{0.0}}{\bigcirc} \qquad \stackrel{\mathbf{0.0}}{\bigcirc} \qquad \stackrel{\mathbf{0.1}}{\bigcirc} \qquad \stackrel{\mathbf{1.0}}{\bigcirc} \qquad \stackrel{\mathbf{1.0}}{\frown} \qquad \stackrel{\mathbf{1.0}}{\bigcirc} \qquad \stackrel{\mathbf{1.0}}{\frown} \qquad \stackrel{\mathbf{1.0}}{\frown} \qquad\stackrel{\mathbf{1.0}}{\frown} \qquad \stackrel{\mathbf{1.0}}{\frown} \qquad \stackrel{\mathbf{1.0}}{\frown} \qquad \stackrel{\mathbf{1.0}}{\frown} \qquad \stackrel{\mathbf{1.0}}{\frown} \qquad\stackrel{\mathbf{1.0}}{\frown} \quad\stackrel{\mathbf{1.0}}{\frown} \quad\stackrel{\mathbf{1.0}}{\frown} \quad\stackrel{\mathbf{1.0}}{\frown} \quad\stackrel{\mathbf{1.0}}{\frown} \quad\stackrel{\mathbf{1.0}}{\frown} \quad\stackrel{\mathbf{1.0$ $\left(c \right)$

MWE identification in a syntax tree

For a **contiguous** MWE:

- ▷ generate all possible variants [3],
- ▷ match them against the leaves of the syntax tree.
- For a **non-contiguous** MWE:
- > all instantiations correspond to a possibly infinite set of syntactic subtrees (formally: a tree language).

Tree-to-tree distance


- Elementary edit operations with costs, e.g.
- ▶ relabeling a node,
- ▷ inserting a leaf,
- \triangleright deleting a leaf (all of cost 1).
- **Edit sequences** transforming one tree into another: $t \xrightarrow{seq} t'$

MWE identification as a tree-to-tree correction problem

- elementary operations on trees e.g. in LTAG [1]: ▷ substitution and adjunction – cost 0, ▷ inserting or deleting a subtree **t**′ at a syntactically non-allowed position – cost equal to the size of t'. \blacktriangleright MWE = a tree **t** (or a family of trees) \triangleright occurrence of a MWE in a syntax tree = subtree $\mathbf{t'}$,
- \blacktriangleright MWE identification = finding the distance between **t** and **t'**.

MWE identification as a tree-to-language correction problem

- elementary operations on trees: ▷ syntactically incorrect transformations – non-negative costs. \blacktriangleright MWE = tree language **L** (possibly infinite set of trees) – e.g. ▷ at once: [[[at]_{Prep}[once]_{Adv}]_{Adv}P[]s]s ▷ L_{at_once} – set of all trees that result from its auxiliary tree by its adjunction to any other tree.
- **Edit distance** between trees \mathbf{t} and $\mathbf{t'}$ minimal cost of all edit sequences which transform t into t'
 - $dist(t, t') = min_{t \xrightarrow{seq} t'} cost(seq)$
- **Example**:

Tree-to-language distance

Distance between a tree t and a tree language L – minimal distance between **t** and any tree in **L**: $DIST(t, L) = min_{t' \in L} \{dist(t, t')\}$

- \triangleright occurrence of a MWE in a syntax tree = subtree **t**,
- MWE identification = correcting t with respect to L under a given threshold th.

Applications

- post-annotating MWEs in treebanks,
- detecting MWEs in a post-parsing stage,
- \blacktriangleright when **th** > **0**:
- processing noisy data (spontaneous speech, social networks), In detecting errors in corpus annotation, grammar, or MWE lexicon.

Tree-to-language correction [2]

► Input: \triangleright tree **t**, ▷ tree language L, non-negative threshold th.

Output – all trees in L whose distance from t is no higher than th

 $\operatorname{corr}(t, L, th) = \{t' \in L : \operatorname{dist}(t, t') \leq th\}$

Bibliography

[1] Anne Abeillé and Yves Schabes. Parsing idioms in lexicalized tags. In EACL'89, Manchester, pages 1–9, 1989.

[2] Joshua Amavi, Béatrice Bouchou, and Agata Savary. On Correcting XML Documents with Respect to a Schema. The Computer Journal, 2013.

[3] Agata Savary.

Multiflex: A Multilingual Finite-State Tool for Multi-Word Units. volume 5642 of *Lecture Notes in Computer Science*, pages 237–240. Springer, 2009.

agata.savary@univ-tours.fr