$Measures\,of\,collocation als trength\, and\, flexibility\, for\, the\, identification\, of\, MWEs$

Patrick Hanks, Ismail El Maarouf, and Michael Oakes

patrick.w.hanks@gmail.com, i.el-maarouf@wlv.ac.uk, michael.oakes@wlv.ac.uk

Introduction

- Automatic identification of MWE
- Word association Measures (Pecina, 2008)
- Idioms in the British National Corpus

Research context

- Corpus Pattern Analysis (Hanks, 2013), DVC project.
- The Pattern Dictionary of English Verbs (http://pdev.org.uk)
- Representation and annotation of MWEs

Measuring the flexibility of MWE: definitions and worked-out example

Statistical formulas

Mean μ of all distances

$$\mu_{(X,Y)} = \frac{1}{n} \sum_{i=1}^{n} dist(X_i, Y_i)$$

Spread σ as the standard deviation of distances

$$\sigma_{(X,Y)} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (dist(X_i, Y_i) - \mu_{(X,Y)})^2}$$

Diversity E as Entropy

$$E_{(X,Y)} = -\sum_{i=1}^{n} P_j log_2 P_j$$

Text distance between collocations

'A dog that barks doesn't bite 1 ,' replied Antonio Navarro, of the dogs that had been bitten 2 and strayed: scared that the in saliva when one animal who had trained his dog to bite 4 Arabs, and who informed u bitten 5 by a police dog and then a bit 6 him.
'A dog that barks doesn't bitten 2 and strayed: scared that the another. In dogs, one of the dog and then a bitten 5 by a police dog and then a bit 6 him.
'A rabs, and who informed u by a police dog and then a bit 6 him.
'A rabs, and who informed u by a police dog and then a bit 6 him.
'A rabs, and who informed u by a police dog and then a bit 6 him.
'A rabs, and who informed u by a police dog and then a bit 9 me on the feet. Blood came bit 9 me on the feet. Blood came bite 10 people, especially them. The

For $X = \{dog, dogs\}$, $Y = \{bite, bites, bit, bitten\}$, $i = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $j = \{"that barks doesn't", "that had been", "another. In", "to", "by a police", "", "his pet", "are", "always"\}$

$$\mu_{X,Y} = \frac{(-4) + (-4) + 3 + (-2) + 4 + (-1) + 3 + (-2) + (-1) + (-2)}{10} = -0.6$$

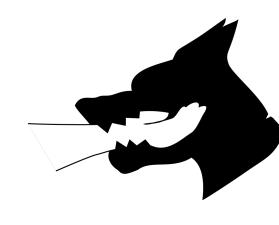
$$\sigma_{X,Y} = \sqrt{\frac{(-4 - (-0.6))^2 + (-4 - (-0.6))^2 + (3 - (-0.6))^2 + ...)}{10}} = 2.76$$

$$E_{X,Y} = -((\frac{1}{10}\log_2\frac{1}{10}) + (\frac{1}{10}\log_2\frac{1}{10}) + ...) = 3.12$$

Case study: MWEs of to bite

PDEV bite: 10 idioms

13	Pattern: IDIOM. Human 1 bites Human 2's head off Implicature: Human 1 speaks sharply and unkindly to Human 2 Example: Just to bite their heads off.					
14	Pattern: IDIOM. Human bites lip Implicature: Human grips his or her lip firmly with the teeth + Example: He bit his lip but stood his ground.					
15	Pattern: Idiom. Human bite off more than [[Human]] can chew Implicature: Human undertakes a task that is is too difficult for him or her to accomplish successfully Example: By aiming to depict Life in the 1990s, Kasdan has probably bitten off more than he can chew, but he					
16	Pattern: IDIOM. Human bites the hand that feeds [[Human]] Implicature: Human attacks his or her benefactor + Example: It is hard to bite the hand that feeds you.					
17	Pattern: IDIOM. Human Institution bites the bullet Implicature: Human or Institution decides to do something necessary but unpleasant + Example: So, this week, Priddle bit the bullet.					
18	Pattern: IDIOM. Human is bitten by the [MOD] bug Implicature: Human becomes very interested in [MOD] Example: Chubby, bubbly jazzman Fats Waller was among the first to really get bitten by the London bug.					
19	Pattern: IDIOM. Human bites the dust Implicature: INFORMAL. Human dies suddenly and violently Example: They bite the dust with lead in their bellies.					
20	Pattern: Idiom. Entity or Process bites the dust Implicature: Informal. Entity or Process comes to a sudden and unwelcome end Example: If so, then we must freely admit that another time-honoured tradition of British self-restraint has very restraint.					
21	Pattern: IDIOM. Human bites REFLDET tongue Implicature: Human makes a desperate effort not to say what is in his or her mind Example: It's all very well telling someone to bite their tongue and not fight back.					
22	Pattern: IDIOM. once bitten twice shy Implicature: an unpleasant experience causes someone to be more cautious in future					


Analysis of the flexibility of idioms in BNC50

X,Y	Freq.	μ	σ	${ m E}$
bite, bullet	9	3	0	0
bite, back	3	1	0	0
bite, feed*	5	4	0	0
bite, off*	6	4	0	1.057
bitten, bug	4	3.75	1.5	2

* including variants

Examples found for {bite, bug}

Examples found for {bite, feeds}

uneasily with service delivery. It is hard to bite 16 the hand that feeds you. There is a dare ctual home. They are not normally going to bite 16 the hand that feeds them. The question leceptive because they may then suddenly bite 16 the hand that holds them. This behavior principal apologist for Official Nationality biting 16 the hand that feed him must have convinguable representations. The principal apologist for Official Nationality bite 16 the hand that feeds and reveal any unit

Perspectives

• Combine measures with structural morpho-syntactic information clues and with word association measures such as MI.

Example: This time around it is a case of `once bitten, twice shy' and their doubt is not simple but compound.

- Study sensitivity of Entropy with other units e.g. characters, words.
- Use a Machine Learning classifier for the discrimination of MWEs.
- Experiment with other languages (less fixed word order)

Acknowledgements

Image credits to Graphist Illustrator Marion Dugalès, https://www.linkedin.com/profile/view?id=282216480

This work is partly supported by AHRC DVC-AH J005940/1, 2012-2015

References

- Pattern Dictionary of English Verbs http://pdev.org.uk
- Kenneth W. Church and Patrick Hanks. 1989. Word Association Norms, Mutual Information and Lexicography. Proc. ACL: 76-83.
- Patrick Hanks. 2013. Lexical Analysis: Norms and Exploitations. MIT Press.
- Adam Kilgarriff, Pavel Rychly, Pavel Smrz and David Tugwell. 2004. The Sketch Engine. Proc. Euralex: 105-116.
- Pavel Pecina. 2008. Lexical Association Measures: Collocation Extraction. PhD thesis, Charles University in Prague.
- Michael P. Oakes. 2012. Describing a Translational Corpus. In: Oakes, M. P. and Ji, M., Quantitative Methods in Corpus-Based Translation Studies. John Benjamins: 115-148.
- Frank Smadja. 1993. Retrieving collocations from text: Xtract. Computational Linguistics 19: 143-177.