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1 Introduction

This poster proposal summarizes the WG3 survey
on tools and techniques for automatic MWE dis-
covery. It serves as a ground for the State of the
Art report of WG3 (Hybrid & Multilingual Pro-
cessing of MWEs). Given length limitations, this
abstract provides keywords and pointers that are
further detailed in our shared document1.

2 Lexical Association Measures

Lexical measures that estimate the association
strength between words are one of the main tools
employed in unsupervised discovery of MWEs in
corpora. They are often based on the statistical
distribution of the expression and of the words
composing it. There are different ways of mea-
suring this strength of word association:
• Measures based on raw frequency of the word

combination [49, 33, 50].

• Measures based on information theory, e.g.
pointwise mutual information [17, 46].

• Measures based on the contingency tables, e.g.
chi-square [17].

• Statistical significance [46].

• Measures of association between three or more
words, e.g. specific correlation [38, 2, 44].

• Measures which use linguistic information in
addition to word frequencies, e.g. collostruc-
tional strength is the affinity of a word to a syn-
tactic pattern [48].

Although much has been discussed about associa-
tion measures, there is no consensus yet about the
best type of measure to use in each case.

1https://docs.google.com/document/
d/118iNh1bUWmODa3ChT3T9fVgt7zMEaw_
oY7aH9uN1i1o/edit?usp=sharing

3 Supervised Machine Learning

A number of succesful approaches based on su-
pervised machine learning have been proposed for
MWE discovery.

Most of them rely on thoroughly developed lex-
ical resources, i.e., corpora, treebanks, dictionar-
ies, lexicons, etc. Therefore, even if the method
per se is language independent, dependency on
certain resources makes supervised machine learn-
ing approaches partly language-dependent [15, 25,
11, 4, 5, 41, 43, 34, 32]. Primary lexical re-
sources can be complemented with additional or
secondary ones, like web dictionaries [35, 53, 14,
15], and WordNet [3, 24, 35].

A number of approaches apply a variety of fea-
tures ranging from shallow to deep ones, i.e. fre-
quencies of n-grams [30], lemmas [43], ortho-
graphic variations [41], scores of association mea-
sures [53, 32], morphosyntactic patterns [11, 10].
Common techniques for complementing super-
vised machine learning include: filtering [11, 30],
pregrouping [15], re-ranking [15], thresholds for
MWE candidates [20, 30], combination of sim-
ple methods (i.e. combination of association mea-
sures [32, 53], POS tags, chunk tags and chunk
sequences [4, 5]), manual annotation [23, 24], and
evaluation to some degree [25].

Application of genetic algorithms show promis-
ing results [1, 9], i.e. for evolving new association
measures that perform at least on the same level as
already known ones [39].

4 Methods based on Semantic Properties

A number of works have used the non-
decomposability property of MWEs to identify
them: the meaning of an MWE cannot be derived
from the meanings of its component words. As
suggested in [28], the methods can be classified
between those based in context distributions and
those based on substitutions.



Context distribution methods use distributional
semantic measures (verctor-based distance, e.g.
Latent Semantic Analysis) to determine the dis-
tance between a MWE candidate to that of one or
more of its component words [6, 27, 45, 12].
Substitution methods assess the degree of rigid-
ity of a MWE by evaluating whether replacing a
component word by a similar word gives rise to a
valid expression (e.g. emotional baggage vs. emo-
tional luggage) [29, 31, 7, 21].

5 Parallel corpora

Parallel corpora are of high importance in the au-
tomatic identification of MWEs. Usually, one-to-
many correspondences are exploited when design-
ing methods for detecting multiword expressions.
On the other hand, aligned parallel corpora can
also enhance the identification of multiword ex-
pressions in different languages: if an algorithm
is implemented for one language, data from other
languages can also be gathered with the help of
aligned units. Related work in multilingual MWE
discovery has been carried out using:
• Word alignments in parallel corpora [18, 43,

42]

• Dependency-parsed word-aligned sentences
[52]

• Alignment mismatches [37, 40]

• Statistical machine translation systems [11]

• Decision trees in parallel corpora [47]

6 Other Methods

Other techniques have been proposed for MWE
discovery, for instance, using Wikipedia [8], using
terminology extraction methods based on linguis-
tic pattens [26] or using syntactic parsing [36].

7 Tools for MWE discovery

Most tools for automatic discovery of MWEs take
as input a textual corpus. Sometimes, they re-
quire prior automatic or manual linguistic analysis
such as sentence segmentation, tokenisation, POS-
tagging or even full parsing. Most tools listed
below implement one of the techniques described
above:
• Tools for corpus searches and concordancers

(Sketch engine, AntConc)

• Association measures and patterns (UCS,

Text::NSP, mwetoolkit, LocalMaxs, ACCU-
RAT Toolkit, Xtract Dragon toolkit, bgMWE).

• Token-based MWE identification (jMWE,
AMALGr, FIPS-Co, StringNet)

• Find and extract recurring tree fragments from
syntax trees (FragmentSeeker, DiscoDOP,
Varro).

8 Evaluation

One of the open challenges in MWE discovery is
evaluation. Some works present the results of their
methods by showing a list of the top-k MWEs re-
turned according to some ranking criterion [16]. It
is possible to manually annotate these top-k candi-
dates, obtaining an estimation of the method’s pre-
cision [36]. Traditional information retrieval mea-
sures report precision and recall with respect to a
gold standard dictionary [53]. In order to avoid
setting a hard threshold, it is possible to average
precision over all recall points through mean av-
erage precision [19]. Given one or more objec-
tive evaluation measures, it is possible to perform
a simultaneous comparative evaluation of a set of
methods [31]. Finally, the use of the acquired
MWEs in an NLP application (like a parser) can
give an indirect usefulness measure of the MWE
discovery method by the performance improve-
ment of the application [22, 51, 13].
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Villavicencio, André Machado, and MariaJosé Finatto.
A hybrid approach for multiword expression identifi-
cation. In Pardo, ThiagoAlexandreSalgueiro, António
Branco, Aldebaro Klautau, Renata Vieira, and Ve-
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