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ABSTRACT

This poster summarizes the WGS3 survey on tools and techniques for automatic MWE discovery. It serves as a ground for
the state-of-the-art report of WG3 on hybrid & multilingual MWE processing. Keywords and pointers provided here are further

detailed in our shared document: http://goo.gl/IEOLLC
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ASSOCIATION MEASURES PArRALLEL CORPORA

Lexical measures that estimate the associ- One-to-many correspondences are ex-
ation strength between words are one of the ploited in MWE detection and cross-lingual

SUPERVISED M ACHINE LEARNING

Most machine learning methods use lexical
resources, i.e., corpora, treebanks, dictionar-
ies, lexicons, etc. — Dependency on certain
resources makes supervised machine learn-
ing approaches partly language-dependent Pri-
mary lexical resources can be complemented
with web dictionaries and WordNet.

Features typically employed:
n-gram frequencies
lemmas
orthographic variations
association measures
morphosyntactic patterns
Common techniques for complementing su-

of measuring this strength of word association:
e Measures based on raw frequency
e Measures of association between 3 or
more words .

e Measures based on information theory,
e Measures which use linguistic information Techniques based on word alignment,

main tools employed in unsupervised discovery MWE detection is also enabled:
e.g. pointwise mutual information
e Measures based on the contingency ta-
bles, e.g. chi-square
in addition to word frequencies, e.qg. affin-
ity of a word to a syntactic pattern
= No consensus about best type of measure

dependency parsing, alignment mismatches
and/or decision trees have been used for MWE
detection. Statistical MT systems also exploit

pervised machine learning: filtering, pregroup-
ing, re-ranking, thresholds, combination, POS
tags, chunks, chunk sequences, manual anno-

of MWEs in corpora. There are different ways
o Statistical significance
to use in each case
\_

| MWE-annotated paralell corpora. iation and evaluation.
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