MWE vs. NLP

MWEs from a Natural Language Processing perspective

PARSEME/ENeL workshop on MWE e-lexicons Héctor Martínez Alonso University of Paris-Diderot & INRIA (France) hector.martinez-alonso@inria.fr

1 Common ground

- 2 MWE for NLP
 - Machine translation
 - Relation extraction
- **3** NLP for MWE, word association
 - Some applications
 - Pointwise mutual Information

4 Wrap-up

MWEs are lexical items that:

- I Are decomposable into multiple lexemes,
- Present idiomatic behaviour at some level of linguistic analysis and, as a consequence,
- 3 Must be **treated as a unit** at some level of computational processing.

	lexical	syntactic	semantic	pragmatic	statistical
bye bye	+	+		+	+
ad hoc	+	+			+
give up		+	+		+
rely on		+			+
rocket science			+		+
washing machine			+		+
give a try			+		+
and so on		+	+		+
every now and then		+	+		+
drastically drop					+
yellow dress					
give a present					
several options					

Don't you know I'm John Mayer's taken-for-dead son, ma'am?

1) Tokenization and wordness status

To day (until XVI century) To-day (until early XX century) Today (well, *today*)

By and large, they were criminals at large.

2) Variation in morphosyntactic fixedness

Ulica Obi-Wana Kenobiego in Grabowiec, Poland

1 Statistical Machine Translation

2 Relation Extraction

1) Statistical Machine Translation

It's raining cats and dogs × Lueve a cántaros

It is always raining cats and dogs $^{\times}$

Siempre está lloviendo gatos y perros

It is always raining cats and dogs $^{ imes}$	Siempre está lloviendo gatos y
	perros

(Counterargument: Maybe the idiom is already fixed at It's.)

We were trying to extract e.g. profession-product/activity pairs. Using patterns like *Person Created Entity*, with

- I Person, list of human terms, e.g. plumber, child, Galileo.
- **2** Created, list of creation verbs, e.g. invent, make.
- **B** *Entity*, the product or activity we want to identify.

E.g. Galileo invented the telescope.

- **1** True Positive: Cobblers **made** shoes
- **2** True Negative: Mankind **brought** conflict
- **3** False positive: Teenagers made *out with* their classmates
- **4** False negative: Diplomats **brought** *about* negotiations

2) Relation extraction: Person Created Entity

- **1** True Positive: Cobblers **made** shoes
- **2** True Negative: Mankind **brought** conflict
- **3** False positive: Teenagers made *out with* their classmates
- **4** False negative: Diplomats **brought** about negotiations

Ignoring MWEs limited our predictive power.

- **1** Estimate compositionality
- **2** Help find glosses and examples
- 3 Identify syonymy
- 4 Detect MWEs

red herring (noun):

1. a dried smoked herring, turned red by the smoke.

2. a clue or information which is misleading or distracting.

bluff, ruse, feint, deception, subterfuge, hoax, trick...

Association between words: Pointwise Mutual Information

$PMI(x; y) = \log\left(\frac{p(x, y)}{p(x) p(y)}\right)$

$PMI(w_1; w_2) = \log\left(\frac{p(w_1, w_2)}{p(w_1) \, p(w_2)}\right)$

$PMI(w_1; w_2) = \log\left(\frac{p(w_1, w_2)}{p(w_1)p(w_2)}\right)$

$$PMI(red; herring) = \log\left(\frac{p(red \ herring)}{p(red)p(herring)}\right)$$

What is the contribution of the numerator and the two terms of denominator and to the score?

$$PMI(x; y) = \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

- Related but not equal to conditional prob. P(x|y) = P(x,y)/P(y)
 PMI is not a prob and can be < 0 and > 1
- $PMI(x;y) \neq PMI(y;x)$

Compare associations of red car, red herring, and fresh herring

W	p(w)	$w_1 \ w_2$	$p(w_1 w_2)$
red	0.00012	red car	0.00000004
fresh	0.00006	red herring	0.0000018
car	0.00007	fresh herring	0.00000015
herring	0.0000025		

Association between words: Mutual Information

W	p(w)	$w_1 \ w_2$	$p(w_1 w_2)$
red	0.00012	red car	0.00000004
fresh	0.00006	red herring	0.0000018
car	0.00007	fresh herring	0.00000015
herring	0.0000025		

$$MI(x; y) = p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)$$

MI(red herring) = 6.4
MI(red car) = 1.6
MI(fresh herring) = 4.3

A single metric does not explain it all... but it explains a lot!

$\bigstar \bigtriangledown \bigtriangledown$	puerto	rico	10.03
	hong	kong	9.73
	los	angeles	9.56
$\bigstar \bigtriangleup \bigtriangledown$	carbon	dioxide	9.10
	prize	laureate	8.86
	san	francisco	8.83
	nobel	prize	8.69
\star \land \land	ice	hockey	8.66
	star	trek	8.64
	car	driver	8.41
$\blacksquare \triangle \triangle$			
$\blacksquare \triangle \triangle$	and	of	-2.80
	a	and	-2.92
	of	and	-3.71

■ NLP benefits from MWE knowledge

2 Lexicography

Thank you!