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Multiword expression (MWE) acquisition

input corpus
(Wikipedia)
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◮ Unrestricted identification of mwes by collecting lexical
co-occurrence statistics on all words in Wikipedia.

◮ Limited pre-processing of the text prior to mwe identification:
◮ Extract plain text from the Wikipedia dumps; Segment text into sentences;

tokenize and strip out urls using regular expressions; Remove all punctuation.
◮ No further processing (pos-tagging, lemmatisation, case normalisation, removal

of numbers or symbols).
◮ Unlemmatised text may be useful for capturing the morphological and syntactic

fixedness of some idiomatic mwes (e.g., spill the beans but not spill the bean).
◮ Rank mwe candidates using the log-likelihood association measure.

◮ Collect word frequency information using the srilm language modelling toolkit.
◮ Count n-grams with n up to 3 (i.e., we treat mwes as bigrams and trigrams).

Compositionality ranking

◮ Take the top 10% from each association-measure-ranked list of mwes
and re-rank these candidates in order of increasing compositionality.

◮ Based on Salehi et al. (2015), this makes use of word embeddings
constructed using word2vec:
◮ Build a vector representation for every word in the vocabulary, as well as for

every mwe, using the extracted Wikipedia text.
◮ Greedy string search-and-replace of all occurrences of mwes.
◮ Replace each of these with a single words-with-spaces token.

◮ Problem: greedy rewriting cannot handle mwes which overlap.
◮ Solution: split mwes into batches with no overlaps.

◮ Each batch produces a word embedding space.
◮ Compute compositionality scores, and merge batches back together.

◮ Compositionality score: cosine similarity of mwe vector with its
constituent words (arithmetic mean).
◮ Do not compute similarity with "stop words" (the 50 most frequent words in the

vocabulary).

0.005 a front for – 0.005 –
0.012 red tape -0.056 0.081

0.191 stops short of 0.285 0.097 –

Integration into the TectoMT machine translation system (English-Spanish)

◮ TectoMT (Žabokrtský et al., 2008) is a hybrid machine translation system built on a pipeline model; statistical analysis phases (e.g., parsing,
transfer) are interleaved with rule-based components.

◮ The system analyses source text up to a high (tectogrammatical) level of abstraction: a dependency graph containing only autosemantic words.

Rincewind parted ways with the luggage
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separar(past)
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Rincewind (with)luggage(the)
Rincewind se separó del equipaje
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mwe identification

◮ mwe identification is performed by string matching; successfully identified mwes are collapsed into a single tectogrammatical node.

Results

◮ QTLeap test corpus contains 1K sentences, ca. 21K words of text
from the IT domain.

◮ bleu scores for translation models trained on Europarl and
in-domain (1.2M sentences, 24M words) text:

Europarl In-domain
Baseline 20.24 26.00

θ = 0.1 20.25 26.46 ***
θ = 0.2 20.19 26.43 **
θ = 0.3 — 26.08

θ = 0.4 — 25.48

θ = 0.5 19.39 24.55

Statistical significance with respect to the baseline:

** p < 0.01, *** p < 0.001.

Experiment Training Test
Types Tokens Types Tokens

Europarl
θ = 0.1 1,093 32,956 1 1

θ = 0.2 5,020 174,015 7 8

θ = 0.5 90,133 2,808,015 220 331

In-domain
θ = 0.1 837 4,593 0 0

θ = 0.2 3,576 19,586 11 14

θ = 0.3 12,333 67,709 52 95

θ = 0.4 32,126 160,828 138 234

θ = 0.5 61,657 303,724 293 480

Discussion

◮ Source-only analysis of automatically acquired mwes improves
translation quality for this language pair (+0.46 bleu points).

◮ The improvement is only seen for the models built with the
in-domain text.
◮ An indication that our approach is sensitive to the domain of the training data.

◮ Evaluation paradigm sensitive to the compositionality of the mwes.
◮ The greatest improvements over the baseline are seen with small values of θ.
◮ Including more compositional mwes (θ > 0.3) eventually reduces bleu scores

below the baseline.
◮ Composite t-nodes representing compositional mwes likely cannot be

adequately translated by single lexemes.
◮ Methodology introduced here is:

◮ Automatic and wide-coverage, allowing construction of linguistic resources with
a minimum of human effort; requires no external lexical resources or
language-specific tools.

◮ Language-independent.
◮ Domain-independent.
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