Integration of automatically-acquired multiword expressions in a hybrid machine translation system Will Roberts and Markus Egg

Department of English and American Studies, Humboldt-Universität zu Berlin

- Unrestricted identification of MWES by collecting lexical co-occurrence statistics on all words in Wikipedia.
- Limited pre-processing of the text prior to MWE identification: • Extract plain text from the Wikipedia dumps; Segment text into sentences;
- tokenize and strip out URLS using regular expressions; Remove all punctuation.
 No further processing (Pos-tagging, lemmatisation, case normalisation, removal of numbers or symbols).
- Unlemmatised text may be useful for capturing the morphological and syntactic fixedness of some idiomatic MWES (e.g., spill the beans but not spill the bean).
- ▶ Rank мwe candidates using the log-likelihood association measure.
 - $\scriptstyle \triangleright$ Collect word frequency information using the srilm language modelling toolkit.
 - Count *n*-grams with *n* up to 3 (i.e., we treat MWES as bigrams and trigrams).

Compositionality ranking

- Take the top 10% from each association-measure-ranked list of MWES and re-rank these candidates in order of increasing compositionality.
- Based on Salehi et al. (2015), this makes use of word embeddings constructed using word2vec:
 - Build a vector representation for every word in the vocabulary, as well as for every MWE, using the extracted Wikipedia text.
 - ► Greedy string search-and-replace of all occurrences of MWES.
 - ▶ Replace each of these with a single words-with-spaces token.
- ▶ Problem: greedy rewriting cannot handle MWES which overlap.
- Solution: split MWEs into batches with no overlaps.
 Each batch produces a word embedding space.
- Compute compositionality scores, and merge batches back together.
- Compositionality score: cosine similarity of MWE vector with its constituent words (arithmetic mean).
- Do not compute similarity with "stop words" (the 50 most frequent words in the vocabulary).
 - 0.005 a front for 0.005 -0.012 red tape -0.056 0.081 0.191 stops short of 0.285 0.097 -

Integration into the TectoMT machine translation system (English-Spanish)

- TectoMT (Žabokrtský et al., 2008) is a hybrid machine translation system built on a pipeline model; statistical analysis phases (e.g., parsing, transfer) are interleaved with rule-based components.
- ▶ The system analyses source text up to a high (tectogrammatical) level of abstraction: a dependency graph containing only autosemantic words.

• MWE identification is performed by string matching; successfully identified MWEs are collapsed into a single tectogrammatical node.

Results

- QTLeap test corpus contains 1K sentences, ca. 21K words of text from the IT domain.
- BLEU scores for translation models trained on Europarl and in-domain (1.2M sentences, 24M words) text:

	Experiment	Training		Test	
Europarl In domain		Types	Tokens	Types	Tokens
Europari in-domain	Europarl				
Baseline 20.24 26.00	$\theta = 0.1$	1,093	32,956	1	1
$\theta = 0.1 \ 20.25 \ 26.46^{3.3}$	$\theta = 0.2$	5,020	174,015	7	8
$\theta = 0.2$ 20.19 26.43 $\theta = 0.3$	$\theta = 0.5$	90,133	2,808,015	220	331
$\theta = 0.3$ = 20.00 $\theta = 0.4$ = 25.48	In-domain				
$\theta = 0.5$ 10.20 24.55	$\theta = 0.1$	837	4,593	0	0
Statistical significance with respect to the baseline:	$\theta = 0.2$	3,576	19,586	11	14
	$\theta = 0.3$	12,333	67,709	52	95
** $p < 0.01$, *** $p < 0.001$.	$\theta = 0.4$	32,126	160,828	138	234
	$\theta = 0.5$	61,657	303,724	293	480

Discussion

- ► Source-only analysis of automatically acquired MWES improves translation quality for this language pair (+0.46 BLEU points).
- ▶ The improvement is only seen for the models built with the in-domain text.
- An indication that our approach is sensitive to the domain of the training data.
 Evaluation paradigm sensitive to the compositionality of the MWES.
- The greatest improvements over the baseline are seen with small values of θ.
 Including more compositional MWES (θ > 0.3) eventually reduces BLEU scores
- below the baseline.
 Composite t-nodes representing compositional MWES likely cannot be
- Composite r-nodes representing compositional MWES likely cannot be adequately translated by single lexemes.
- Methodology introduced here is:
 - Automatic and wide-coverage, allowing construction of linguistic resources with a minimum of human effort; requires no external lexical resources or language-specific tools.
 - Language-independent.
 - Domain-independent.

References

Bahar Salehi, Paul Cook, and Timothy Baldwin. A word embedding approach to predicting the compositionality of multiword expressions. In *Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics*, pages 977–983, 2015.

Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. TectoMT: Highly modular MT system with tectogrammatics used as transfer layer. In *Proceedings of the Third Workshop on Statistical Machine Translation*, pages 167–170. Association for Computational Linguistics, 2008.

cussion