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The U.S. island of Guam is maintaining a high 
state of alert after the Guam airport and its offices 
both received an e-mail from someone calling 
himself the Saudi Arabian Osama bin Laden and 
threatening a biological/chemical attack against 
public places such as the airport. 

MT

translation = decoding: e* = argmax P(e|f)
                                                 e  

Phrase-Based SMT in a Nutshell

of course john has
    course john has fun
               john has fun with
                       .....

Target
Language
Model

Translation
Model
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Figure 5.1: Phrase-based machine translation. The input is segmented into
phrases (not necessarily linguistically motivated), translated one-to-one into phrases
in English and possibly reordered.

by five phrase pairs. The English phrases have to be reordered, so that the
verb follows the subject.

The German word natuerlich best translates into of course. To cap-
ture this, we would like to have a translation table that maps not words
but phrases. A phrase translation table of English translations for the
German natuerlich may look like the following:

Translation Probability p(e|f)
of course 0.5
naturally 0.3
of course , 0.15
, of course , 0.05

It is important to point out that current phrase-based models are not
rooted in any deep linguistic notion of the concept phrase. One of the
phrases in Figure 5.1 is fun with the. This is an unusual grouping. Most
syntactic theories would segment the sentence into the noun phrase fun and
the prepositional phrase with the game.

However, learning the translation of spass am into fun with the is very
useful. German and English prepositions do not match very well. But the
context provides useful clues how they have to be translated. The German
am has many possible translations in English. Translating it as with the is
rather unusual (more common is on the or at the), but in the context of
following spass it is the dominant translation.

Let’s recap: We have illustrated two benefits of translations based on
phrases instead of words: For one, words may not be the best atomic units
for translation, due to frequent one-to-many mappings (and vice versa).
Secondly, translating word groups instead of single words helps to resolve
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Training:

Model Size

Phrase tables
• 2 phrase translation probabilities
• 2 lexical translation weights

Language models
• 1 probability per known N-gram
• backoff probabilities, unknown word probabilities

Example: English - French trained on Europarl
• 114 million phrase translations
• 113 million 5-gram probabilities in language model
• 133 million backoff probabilities in language model

Decoding Complexity

Naively, in a sentence of N words with T translation options for 
each phrase, we can have 

• O(2N) phrase segmentations,
• O(TN) sets of phrase translations,
• O(N!) word reordering permutations



Translation OptionsTranslation Options

Illustrations by Philipp Koehn

Translation Options

he

er geht ja nicht nach hause

it
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home
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return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

• Many translation options to choose from

– in Europarl phrase table: 2727 matching phrase pairs for this sentence
– by pruning to the top 20 per phrase, 202 translation options remain
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Decoding: Hypothesis Expansion
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also create hypotheses from created partial hypothesis

Decoding 14

Is it always possible to translate any sentence in this way?
What would cause the process to break down
so the decoder can’t find a translation
that covers the whole input sentence?
How could you make sure that this never happens?Decoding: Hypothesis Expansion
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Decoding 14

Get (all) translation options for all possible segmentations of the 
input sentence to be translated!

Using the available translation options
create translation hypothesis from left to right:

Decoding by Hypothesis Expansion
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Decoding 14

Exploiting Model Locality

What we need to score a new hypothesis is
• the score of the previous hypothesis
• the translation model score
• the new language model score

Decoding complexity

Naively, in a sentence of N words with T translation options for
each phrase, we can have

O(2N ) phrase segmentations,
O(TN ) sets of phrase translations, and
O(N!) word reordering permutations.

Exploiting Model Locality

Bakom huset hittade polisen en stor mängd narkotika .

Behind the house police found a big

To score a new hypothesis, we need:
the score of the previous hypothesis
the translation model score
the new language model scores

Hypothesis recombination

The translation model only looks at the current phrase.
The n-gram model only looks at a window of n words.
The choices the decoder makes are independent of
everything beyond this window!
The decoder never reconsiders its choices once they’ve
moved out of the n-gram history.

given

context
independent

limited
window

Choices are independent of everything beyond this window

Hypothesis Recombination

Example:
• Three hypotheses with the same coverage
• trigram language model

Competing hypotheses can be discarded because they will 
never beat the winning one later on!

Hypothesis recombination

Suppose we have these hypotheses with the same coverage,
and we use a trigram language model:

After the house police Score = –12.5

Behind the house police Score = –11.2

, the house police Score = –22.0

We already know the winner!
We can discard the competing hypotheses.

Hypothesis recombination

Hypothesis recombination combines branches
in the search graph:

It’s a form of dynamic programming.
Recombination reduces the search space substantially. . .
. . . it preserves search optimality. . .
. . . but decoding is still exponential!

Pruning

To make decoding really efficient,
we expand only hypotheses that look promising.
Bad hypotheses should be pruned early
to avoid wasting time on them.
Pruning compromises search optimality!



Hypothesis Recombination

In the search graph: Combine branches

It is a form of dynamic programming
• substantial reduction of the search space
• search is still optimal
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it is

it is

it is

Figure 6.3: Recombination example: Two hypothesis paths lead to two matching
hypotheses: they have the same number of foreign words translated, and the same
English words in the output, but di↵erent scores. In the heuristic search they can
be recombined, the worse hypothesis is dropped.

it

he

does not

does not

it

he does not

Figure 6.4: More complex recombination example: In heuristic search with a
trigram language model, also here two hypotheses can be recombined. Both hy-
potheses are the same in respected to subsequent costs: The language model still
considers the last two words produced (does not), but not the third last word. All
other later costs are independent of the words produced so far.

worse hypothesis can never be part of the best overall path. For any path
that includes the worse hypothesis, we can substitute it with the better one,
and get a better score. Thus, we can drop the worse hypothesis.

Identical English output is not required for hypothesis recombination,
as the example in Figure 6.4 illustrates. Here we are considering two paths
that start with di↵erent translations for the first German word er, namely
it and he. But then we continue with the same translation option, skipping
one German word, and translation ja nicht as does not.

Here, we have two hypotheses that look similar: they are identical in
their German coverage, but di↵er slightly in the English output. However,
recall our argument on why we can recombine hypotheses. If any path
starting from the worse hypothesis can also be used to extend the better hy-
pothesis with the same costs, then we can safely drop the worse hypothesis,
since it can never be part of the best path.

It does not matter in our two examples that the two hypothesis paths
di↵er in their first English word. All subsequent phrase translation costs do
not depend on already generated English words. Only the language model

Hypothesis Recombination

Combine branches greatly reduces the search space

But decoding is still exponential
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are
p:-1.220

it
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Figure 9.1: Search graph from beam-search decoding (refer back to Chapter 6,
particularly Figure 9.1). Hypotheses are represented by rectangles, containing the
last added English phrase and the partial translation probability (in log-probability
form). The translation process proceeds by hypothesis expansion, where new partial
translations form by attaching a new phrase translation to an existing hypothesis.
Paths may be merged by hypothesis recombination (white arrow-heads).

9.1.2 Word Lattice

We would like to use the search graph to extract the best translations of the
input sentence. For this purpose, we convert the search graph into another
data structure. The data structure we use that is very common in computer
science: a finite state machine. Such a machine is defined by a number
of states, designated start and end states, and transitions between states.
At each transition the most recently translated phrase is emitted. In a
weighted finite state machine, a cost function for the state transitions
is defined.

See Figure 9.2 on the facing page for the weighted finite state machine
that corresponds to our search graph. The structure is almost identical.
States are now identified by the last two words added (when using a trigram
language model, transitions from a state depend on the last two word in the
history). The states themselves do not hold any probability scores anymore,
these can be now found at the transitions. Each transition cost is the di↵er-
ence between the costs of the hypotheses that the transition connects. Note
that we make no distinction anymore between transitions from regular and
recombined hypothesis expansions.

Stack DecodingStack decoding

Illustrations by Philipp Koehn

Stacks

are
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no word
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• Hypothesis expansion in a stack decoder

– translation option is applied to hypothesis
– new hypothesis is dropped into a stack further down

Decoding 21

Stack decoding algorithm

1: AddToStack(s0, h0)
2: for i = 0 . . . N � 1 do
3: for all h 2 si do
4: for all t 2 T do
5: if Applicable(h, t) then
6: h0  Expand(h, t)
7: j  WordsCovered(h) + WordsCovered(t)
8: AddToStack(s j , h0)
9: end if

10: end for
11: end for
12: end for
13: return best hypothesis on stack sN

Stacks

are

it

he

goes does not

yes

no word
translated

one word
translated

two words
translated

three words
translated

• Hypothesis expansion in a stack decoder

– translation option is applied to hypothesis
– new hypothesis is dropped into a stack further down

Decoding 21

AddToStack(s, h)

1: for all h0 2 s do
2: if Recombinable(h, h0) then
3: add higher-scoring of h,h0 to stack s, discard other
4: return
5: end if
6: end for
7: add h to stack s
8: if stack too large then
9: prune stack

10: end if

sorted by the number of input words covered by the given hypothesis

define stack
limits

Pruning

Histogram Pruning
• keep no more that n hypotheses per stack
• Parameter: Stack size n

Threshold Pruning
• discard hypotheses with low scores compared to the score 

of the best hypothesis on the same stack h*
• Score(h) < a * Score(h*)
• Parameter: threshold factor a



Distortion Limits

Limit reordering reduces search space dramatically
• most partial hypotheses cover the same input
• search complexity: linear in sentence length

Is it OK to do that?
• for closely related languages: most reordering is local
• could do pre-ordering if necessary

How to prune

Histogram pruning
Keep no more than S hypotheses per stack.
Parameter: Stack size S

Threshold pruning
Discard hypotheses whose score is very low compared to
that of the best hypothesis on the stack h⇤:

Score(h) < ⌘ · Score(h⇤)

Parameter: Beam size ⌘

Beam search: Complexity

For each of the N words in the input sentence,
expand S hypotheses
by considering T translation options each:

O(S · N · T )

The number of translation options is linear in the sentence length:

O(S · N2)

Distortion limit

When translating between closely related languages,
most reorderings are local. . .
. . . and anyhow, we haven’t got any reasonable models
for long-range reordering!
If we impose a limit on reordering, the number of translation
options to consider at each step is bounded by a constant.

Bakom huset hittade polisen en stor mängd narkotika .

Behind the house police
limited distortion window

Take Home Messages

Translation as decoding
• optimise the search problem
• hypothesis expansion and recombination
• pruning and beam search

Links
• Moses decoder: http://www.statmt.org/moses/
• other tools: http://www.statmt.org

Hierarchical Models

Hierarchical Phrase-Based Models
Hierarchical Phrase-based MT

Like phrase pairs. . .

As British political scandals is juicygo , this one not particularly .

Für britische Skandale dieser nicht besonders schlüpfrig .ist

But with nesting:

 , this one is not particularlyAs                                               go juicy .

ist dieser .

British political scandals

Für britische Skandale nicht besonders schlüpfrig 

Syntax-based Statistical Machine Translation 8



Hierarchical Phrase-Based Models

standard phrase-based models = one level of hierarchy
HIERO = any kind of tree depth
Represented as Synchronous Context-Free Grammars (SCFGs)

only one non-terminal X
(linked between source 

and target)

Hierarchical Phrase-Based SMT

Synchronous re-write rules:

Add probabilities derived from statistics for each rule

Hierarchical Phrase-based MT

deshalb             diesei

therefore the advertisement

Werbung

was

                          undunzutreffend irreführend

                        andunfounded misleading

Rules can include up to two non-terminals:

x ! deshalb x1 die x2 | therefore the x2 x1

x ! x1 und x2 | x1 and x2

Glue rules concatenate hierarchical phrases:

s ! x1 | x1

s ! s1 x2 | s1 x2

Syntax-based Statistical Machine Translation 10
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Hierarchical Phrase Extraction

Extracting Phrase Translation Rules
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werde Ihnen die entsprechenden 
Anmerkungen aushändigen
   =   shall be passing on to you 
         some comments
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Hierarchical Phrase Extraction

Extracting Hierarchical Phrase Translation Rules
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Linguistically Motivated Syntax

String-to-Tree models
• train on parsed parallel corpora (at least target language)
• extract hierarchical SCFG rules
• translate plain text input

Tree-to-String and Tree-to-Tree models
• train on parsed parallel corpora
• extract synchronous tree-substitution rules (STSGs)
• translate parsed input

Learning Syntactic Rules

Learning Syntactic Translation Rules
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Learning Syntactic Rules

Impossible Rules
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Learning Syntactic Rules

Rules with Context
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Parameter Estimation

Extract all rules
• from large aligned (possibly parsed) parallel data
• rule extraction heuristics

Score rules
• count statistics
• maximum-likelihood estimation

Decoding Hierarchical 
Models

Generating Strings with SCFGs
Example

Input jemand mußte Josef K. verleumdet haben
someone must Josef K. slandered have

Grammar

) r1: np ! Josef K. | Josef K. 0.90
) r2: vbn ! verleumdet | slandered 0.40
) r3: vbn ! verleumdet | defamed 0.20
) r4: vp ! mußte x1 x2 haben | must have vbn2 np1 0.10
) r5: s ! jemand x1 | someone vp1 0.60
) r6: s ! jemand mußte x1 x2 haben | someone must have vbn2 np1 0.80
) r7: s ! jemand mußte x1 x2 haben | np1 must have been vbn1 by someone 0.05

(Six derivations in total)
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Generating Strings with SCFGs
Example

Input jemand mußte Josef K. verleumdet haben
someone must Josef K. slandered have

Grammar

) r1: np ! Josef K. | Josef K. 0.90
) r2: vbn ! verleumdet | slandered 0.40
) r3: vbn ! verleumdet | defamed 0.20
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) r6: s ! jemand mußte x1 x2 haben | someone must have vbn2 np1 0.80
) r7: s ! jemand mußte x1 x2 haben | np1 must have been vbn1 by someone 0.05

Derivation 1 jemand

X

someone

S

Source Target

verleumdet

X

Josef

habenX

X

mußte

slandered

have VBNmust

VP

K.

NP

Josef K.
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Generating Strings with SCFGs

Example
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Translating with SCFGs

Viterbi S2T Decoding (-LM)

Objective Find the highest-scoring synchronous derivation d⇤

Solution

1. Project grammar
Project weighted SCFG to weighted CFG
f : G ! G0 (many-to-one rule mapping)

2. Parse
Find Viterbi parse of sentence wrt G0

3. Translate
Produce synchronous tree pair by applying inverse
projection f 0

Syntax-based Statistical Machine Translation 70

Translating = Parsing 

Use synchronous CFG like monolingual CFG

Use standard algorithms for probabilistic parsing
• CKY, CKY+, Earley

Keep track of target side of applied rules 
or reconstruct synchronous derivation

Step 1: Project Grammar to CFG

G

) r1: np ! Josef K. | Josef K. 0.90
) r2: vbn ! verleumdet | slandered 0.40
) r3: vbn ! verleumdet | defamed 0.20
) r4: vp ! mußte x1 x2 haben | must have vbn2 np1 0.10
) r5: s ! jemand x1 | someone vp1 0.60
) r6: s ! jemand mußte x1 x2 haben | someone must have vbn2 np1 0.80
) r7: s ! jemand mußte x1 x2 haben | np1 must have been vbn1 by someone 0.05

G0

) q1: np ! Josef K. 0.90
) q2: vbn ! verleumdet 0.40
) q3: vp ! mußte np vbn haben 0.10
) q4: s ! jemand vp 0.60
) q5: s ! jemand mußte np vbn haben 0.80

• G is original synchronous grammar, G0 is monolingual projection
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MT Evaluation

What Is The Problem?

A typical example from the 2001 NIST evaluation set:Ten Translations of a Chinese Sentence

Israeli o�cials are responsible for airport security.
Israel is in charge of the security at this airport.
The security work for this airport is the responsibility of the Israel government.
Israeli side was in charge of the security of this airport.
Israel is responsible for the airport’s security.
Israel is responsible for safety work at this airport.
Israel presides over the security of the airport.
Israel took charge of the airport security.
The safety of this airport is taken charge of by Israel.
This airport’s security is the responsibility of the Israeli security o�cials.

(a typical example from the 2001 NIST evaluation set)

Evaluation of Machine Translation 2

Evaluation Metrics

Subjective judgements by human evaluators
• translation quality
• grammaticality and style
• inter-annotator agreement

Automatic evaluation metrics
• based on reference translations
• linguistic resources to account for natural variation

Task-based evaluation, e.g.
• estimate post-editing effort
• information preservation for cross-lingual IR

Adequacy and FluencyFluency and Adequacy: Scales

Adequacy Fluency
5 all meaning 5 flawless English
4 most meaning 4 good English
3 much meaning 3 non-native English
2 little meaning 2 disfluent English
1 none 1 incomprehensible

Evaluation of Machine Translation 6



Evaluators Disagree
Evaluators Disagree

• Histogram of adequacy judgments by di↵erent human evaluators

1 2 3 4 5

10%

20%

30%

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

(from WMT 2006 evaluation)
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Histogram of adequacy judgments by different evaluators:

Automatic Evaluation

MT

system
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compare score

test set
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Metric System A System B
word error rate (wer) 57% 71%
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reference
translation

System A System B

BLEU (Bilingual Evaluation Understudy)
BLEU

• N-gram overlap between machine translation output and reference translation

• Compute geometric mean of n-gram precisions (typically size 1 to 4):

P = n
p

precision1 ⇤ precision2 ⇤ ... ⇤ precisionn

= (precision1 ⇤ precision2 ⇤ ... ⇤ precisionn)
1
n =

 
nY

i=1

precisioni

!1
n

• Add brevity penalty for short translations:

BP

⇢
1 if output-length c > reference-length r

exp(1� r/c) if output-length c  reference-length r
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N-gram overlap between MT output and reference translation
Geometric mean of n-gram precisions (typically 1 to 4)

Additional brevity penalty for short translation (recall)

BLEU

• N-gram overlap between machine translation output and reference translation

• Compute geometric mean of n-gram precisions (typically size 1 to 4):

P = n
p

precision1 ⇤ precision2 ⇤ ... ⇤ precisionn

= (precision1 ⇤ precision2 ⇤ ... ⇤ precisionn)
1
n =

 
nY

i=1

precisioni

!1
n

• Add brevity penalty for short translations:

BP

⇢
1 if output-length c > reference-length r

exp(1� r/c) if output-length c  reference-length r
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Example
Example

airport security   Israeli officials are responsible

Israeli officials   responsibility of   airport   safety

Israeli officials are responsible for airport securityREFERENCE:

SYSTEM A:

SYSTEM B:

4-GRAM MATCH2-GRAM MATCH

2-GRAM MATCH 1-GRAM MATCH

Metric System A System B
precision (1gram) 3/6 6/6
precision (2gram) 1/5 4/5
precision (3gram) 0/4 2/4
precision (4gram) 0/3 1/3
brevity penalty 6/7 6/7

bleu 0% 52%
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Multiple Reference Translations

Account for variability: Use multiple reference translations
• N-grams may match in any of the reference
• closest reference length is used for brevity penalties

Example:

Multiple Reference Translations

• To account for variability, use multiple reference translations

– n-grams may match in any of the references
– closest reference length used

• Example

Israeli officials    responsibility of    airport   safety

Israeli officials are responsible for airport security
Israel is in charge of the security at this airport

The security work for this airport is the responsibility of the Israel government
Israeli side was in charge of the security of this airport

REFERENCES:

SYSTEM:
2-GRAM MATCH 1-GRAM2-GRAM MATCH

Evaluation of Machine Translation 20

Correlation with Human Judgement

Correlation with Human Judgement
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Typical BLEU Scores

BLEU scores for 110 SMT systems (Koehn 2005)
Typical BLEU Scores

BLEU scores for 110 statistical machine translation systems (Koehn 2005)

% da de el en es fr fi it nl pt sv
da - 18.4 21.1 28.5 26.4 28.7 14.2 22.2 21.4 24.3 28.3
de 22.3 - 20.7 25.3 25.4 27.7 11.8 21.3 23.4 23.2 20.5
el 22.7 17.4 - 27.2 31.2 32.1 11.4 26.8 20.0 27.6 21.2
en 25.2 17.6 23.2 - 30.1 31.1 13.0 25.3 21.0 27.1 24.8
es 24.1 18.2 28.3 30.5 - 40.2 12.5 32.3 21.4 35.9 23.9
fr 23.7 18.5 26.1 30.0 38.4 - 12.6 32.4 21.1 35.3 22.6
fi 20.0 14.5 18.2 21.8 21.1 22.4 - 18.3 17.0 19.1 18.8
it 21.4 16.9 24.8 27.8 34.0 36.0 11.0 - 20.0 31.2 20.2
nl 20.5 18.3 17.4 23.0 22.9 24.6 10.3 20.0 - 20.7 19.0
pt 23.2 18.2 26.4 30.1 37.9 39.0 11.9 32.0 20.2 - 21.9
sv 30.3 18.9 22.8 30.2 28.6 29.7 15.3 23.9 21.9 25.9 -
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Take Home Messages

Manual evaluation
• adequacy and fluency
• difficult and expensive

 Automatic Evaluation
• comparison to human reference translations
• fast, reusable but not always reliable

Links
• WMT evaluation campaigns: http://www.statmt.org/wmt16/
• IWSLT (spoken MT): http://workshop2016.iwslt.org

Running Experiments

Running Experiments

translating &
evaluation

translation
model

language
model

parameter
tuning

Next Sessions

MWEs and SMT
• handle MWEs in machine translation
• find MWEs in parallel data sets

Train and use your own SMT model
• language modeling
• word alignment
• translation modeling
• translating test sets and evaluate
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