Automatic Extraction of MWEs for the Pattern Dictionary of English Verbs

Patrick Hanks, Ismail El Maarouf, and Michael Oakes

patrick.w.hanks@gmail.com, i.el-maarouf@wlv.ac.uk, michael.oakes@wlv.ac.uk

Introduction

- Automatic identification of MWE
- Word association Measures (Pecina, 2008)
- Idioms in the British National Corpus

Research context

- Corpus Pattern Analysis (Hanks, 2013), DVC project.
- The Pattern Dictionary of English Verbs (http://pdev.org.uk)

making information work

• Representation and annotation of MWEs

Measures of word association and flexibility

1. Measuring strength of collocations with **Pointwise Mutual Information**

Where P(x,y) is the probability of two words occurring in a common context (e.g. span of 5 words, or in subject-object) relation), and P(x) and P(y) are the probabilities of finding words x and y respectively anywhere in the corpus. PMI is positive if the two words tend to co-occur, 0 if they occur together as often as one would expect by chance, and less than 0 if they are in complementary distribution (Church and Hanks, 1989).

Extending word association measures to 3 variables (Van de Cruys, 2011)

Specific Correlation for three variables

$$SC(x, y, z) = log_2 \frac{P(x, y, z)}{P(x) \cdot P(y) \cdot P(z)}$$

Specific Interaction Information for three variables

$$SII(x, y, z) = log_2 \frac{P(x, y), P(y, z), P(x, z)}{P(x) \cdot P(y) \cdot P(z) \cdot P(x, y, z)}$$

3. Measuring flexibility of collocations using Shannon's Diversity Index (Entropy)

Mean μ of text distances

Standard Deviation σ of text distances

Entropy E of text distances

4. Measuring **Idiomaticity** of collocations

$$\sigma_{(X,Y)} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (dist(X_i, Y_i) - \mu_{(X,Y)})^2}$$

$$E_{(X,Y)} = -\sum_{i=1}^{n} P_j log_2 P_j$$

 $\frac{number \ of \ idiomatic \ occurrences \ of \ (X,Y)}{total \ number \ of \ occurrences \ of \ (X,Y)}$ $Idiomaticity_{(X,Y)} =$

Case study: Statistics of word association and flexibility for *bite*

PMI in BNC50			SC and SII in BNC50 (SII sorted)					Flexibility of idioms in BNC50					
verb x	collocate y	MI(x,y)	У	Z	SC	SII	Freq.	X,Y	Freq.	μ	σ	E	
bitten	bug	12.49	dobj:bullet	prep:over/variety	19.05	4.99	2	bite, bullet	9	3	0	0	
biting		11.42	dobj:bullet	nsubj:maker	14.60	0.55	2	bite, feed*	5	4	0	0	
bite		11.25	nsubj:maker	prep:over/variety	17.37	0.23	2	bite, off*	6	4	0	1.057	
bites	bullet	11.12	advmod:hard	prep:by/attacker	14.53	-0.29	2	bitten, bug	4	3.75	1.5	2	
bitten		8.82	dobj:bullet	partmod:take	13.28	-0.77	2	*	including	variant	S		
bit		7.46	nsubj:recession	prep:into/industry	13.61	-1.08	2						
bite	feeds	8.46	partmod:take	prep:over/variety	16.05	-1.10	2	Idiomaticity in the full BNC					
bites		5.38	dobj:tongue	prt:off	7.80	-1.25	2	X,Y	Idiom.	Freq	. I	diomatic	city
bitten		4.66	advcl:chew	prt:off	11.90	-1.46	4	bite, bullet	31	31		1	
biting	off	4.36	auxpass:be	cc:and	-9.16	-2.47	2	bite, bug	16	25		0.64	
bite		3.92	advmod:even	aux:can	-1.96	-10.11	2	kick, bucket	6	15		0.4	
bit		0.13	•••	• • •	•••	• • •	•••	spill, beans	40	41		0.98	

PDEV entry for *bite*: 22 patterns, 10 idioms

- Pattern: Ірюм. Human 1 bites Human 2's head off *Implicature:* Human 1 speaks sharply and unkindly to Human 2 Example: Just to bite their heads off
- 14 Pattern: IDIOM. Human bites lip

Perspectives

- Continue experiments on the use of statistical measures for MWEs.
- Combine measures in a statistical classifier for MWE extraction.

Implicature: Human grips his or her lip firmly with the teeth (+) Example: He bit his lip but stood his ground.

- **15** Pattern: IDIOM. Human bite off more than [[Human]] can chew Implicature: Human undertakes a task that is is too difficult for him or her to accomplish successfully Example: By aiming to depict Life in the 1990s, Kasdan has probably bitten off more than he can chew, but he i
- **16** *Pattern:* IDIOM. Human bites the hand that feeds [[Human]] Implicature: Human attacks his or her benefactor (+) Example: It is hard to bite the hand that feeds you.
- Pattern: IDIOM. Human | Institution bites the bullet Implicature: Human or Institution decides to do something necessary but unpleasant (+) Example: So, this week, Priddle bit the bullet.
- Pattern: IDIOM. Human is bitten by the [MOD] bug 18 Implicature: Human becomes very interested in [MOD] Example: Chubby, bubbly jazzman Fats Waller was among the first to really get bitten by the London bug.
- **19** *Pattern:* IDIOM. Human bites the dust Implicature: INFORMAL. Human dies suddenly and violently Example: They bite the dust with lead in their bellies.
- 20 Pattern: IDIOM. Entity or Process bites the dust Implicature: INFORMAL. Entity or Process comes to a sudden and unwelcome end Example: If so, then we must freely admit that another time-honoured tradition of British self-restraint has very re-
- 21 Pattern: IDIOM. Human bites REFLDET tongue *Implicature:* Human makes a desperate effort not to say what is in his or her mind Example: It's all very well telling someone to bite their tongue and not fight back.
- 22 Pattern: IDIOM. once bitten twice shy Implicature: an unpleasant experience causes someone to be more cautious in future Example: This time around it is a case of `once bitten, twice shy' and their doubt is not simple but compound.

• Experiment with other languages (less fixed word order)

References and Acknowledgements

- This work is partially supported by AHRC [DVC, AH/J005940/1, 2012-2015]. - Pattern Dictionary of English Verbs: http://pdev.org.uk - Kenneth W. Church and Patrick Hanks. 1989. Word Association Norms, Mutual Information and Lexicography. Proc. ACL: 76-83. - Patrick Hanks. 2013. Lexical Analysis: Norms and Exploitations. MIT Press. - Michael P. Oakes. 2012. Describing a Translational Corpus. In: Oakes, M. P. and Ji, M., Quantitative Methods in Corpus-Based Translation Studies. John Benjamins: 115-148.
- Pavel Pecina. 2008. Lexical Association Measures: Collocation Extraction. PhD thesis, Charles University in Prague.
- Tim Van de Cruys. 2011. Two Multivariate Generalizations of Pointwise Mutual Information. Disco 2011, 24 June 2011, Portland, OR.