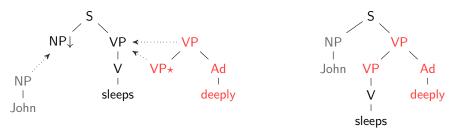
COST Action IC1207

PARSing and Multi-word Expressions

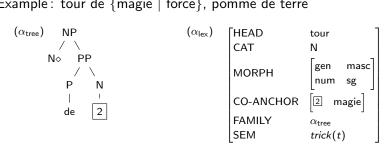
Towards linguistic precision and computational efficiency in natural language processing


Working Group 2: PARSING TECHNIQUES FOR MWEs

Pre-processing MWEs in TAG Parsing

PARSEME General Meeting Frankfurt-am-Main, 09 September 2014

Introduction (recall Tree-Adjoining Grammar, TAG)


- Tree-rewriting system [Joshi and Schabes, 1997]
- Tree-rewriting operations: Substitution / Adjunction

 Elementary trees built on linguistic well-formedness constraints (lexicalization, predicate/arguments coocurrency, semantic minimality) [Abeillé, 1993]

Introduction (continued, recall MWEs in TAG)

- TAG's extended domain of locality makes it possible to express long-distance dependencies within single elementary rules (trees)
- Following [Abeillé, 1995], MWEs can be represented via **dedicated TAG tree families** (often made of single trees)
- Example: tour de {magie | force}, pomme de terre

• Problem : high redundancy \rightarrow computational cost at parsing

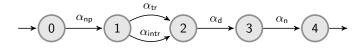
Lexical selection for TAG Parsing

2 Lexical selection and Multi-Word Expressions

TAG Parsing

- TAG is mainly used as a **lexical formalism** \rightarrow each rule is associated with at least one lexical item (\approx word)
- Parsing process:
 - Segmentation / POS tagging
 - **Subgrammar extraction** (also known as *supertagging* or *lexical selection*)
 - Ore TAG parsing (tree rewriting, using either top/down or bottom/up algorithms)
 - **9** Feature unification (on a factorised structure called parse forest)
- Proposal : enhancing step 2 by performing a *better filtering* to reduce the search space at (core) parsing

Supertagging


- Original idea from [Bangalore and Joshi, 1999]: **learning** which TAG tree is most likely to be associated with a lexical item *in a given context*
- Idea from [Boullier, 2003]: **finding out** which TAG trees are relevant *in a given context*
- Technique used : **approximating** the input TAG with a CFG, and use the latter for parsing
- Drawback : on-line **computation cost** is still high with real-size grammars
- Idea from [Gardent et al., 2014]: approximating the input TAG with a **polarity-based automaton** encapsulating information about *left context*

Toy example

• Input grammar

(α_{np})	$(\alpha_{\sf d})$	(α_n)	$(lpha_{intr})$	$(lpha_{tr})$
NP I John	D an	NP ✓ ∖ D↓ N apple	S NP↓ VP I V eats	S $NP\downarrow VP$ $V NP\downarrow$ V $NP\downarrow$ $eats$

- Sentence to parse: John eats an apple
- Initial automaton-based grammar selection :

About polarities

- Automaton's paths contain **all** possible tree selections \rightarrow surgeneration
- Polarities' role : keeping track of missing constituents (unsolved TAG substitutions) to remove *unsatisfiable* trees during selection
- Technique : enriching the automaton's states with couples of the form (CAT, INT) where INT is:
 - a positive integer when a constituent is given (root node)
 - a negative integer when it is needed (substitution node)

Conclusion

Toy example (continued)

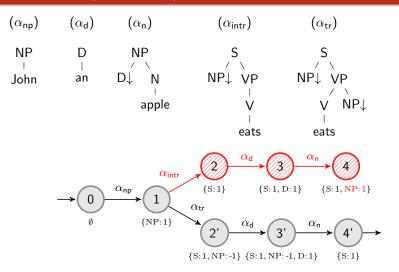


Figure : A polarity automaton for the sentence 'John eats an apple.'

About left-context

• Idea: reducing the automaton as soon as possible, that is, once a left context is not satisfied

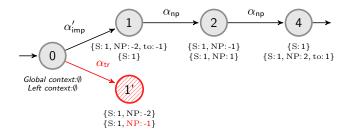
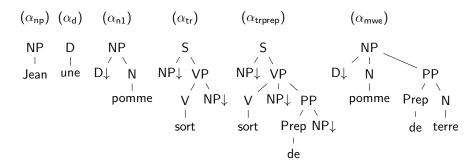


Figure : Lexical selection using left context for 'Say it to John.'

Lexical selection for TAG Parsing

2 Lexical selection and Multi-Word Expressions


Selecting MWEs in a TAG

- Polarity-based lexical selection can be used to process MWEs, so that:
 - both the trees of the literal meaning and those of the idiomatic meaning are selected
 - the idiomatic meaning is prioritised
- Prioritisation is achieved by comparing the length of the automaton paths (recall that TAG trees for MWEs do not have substitution nodes)

Representing MWEs in TAG (continued)

• Example :

(1) Jean sort une pomme de terre John plucks an apple from earth John plucks a *potato*

Representing MWEs in TAG (continued)

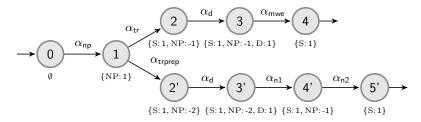


Figure : Polarity automaton for the sentence 'Jean sort une pomme de terre.'

Plan

Lexical selection for TAG Parsing

2 Lexical selection and Multi-Word Expressions

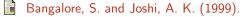
Conclusion

- Lexicalized TAG can encode various MWEs at the price of structural redundancy
- Resulting parsing cost can be reduced by lexical selection
- Polarity-based lexical selection offers a way to characterize MWEs (useful for parsing ranking)

References I

Abeillé, A. (1993).

Les Nouvelles Syntaxes.


A. Colin – Paris.

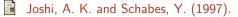
Abeillé, A. (1995).


The Flexibility of French Idioms: A Representation with Lexicalised Tree Adjoining Grammar.

In Everaert, M., van der Linden, E.-J., Schenk, A., and Schreuder, R., editors, <u>Idioms: Structural and Psychological Perspectives</u>, chapter 1. Lawrence Erlbaum Associates.

Supertagging: An approach to almost parsing. Computational Linguistics, 25(2):237–262.

References II



Supertagging: A non-statistical parsing-based approach.

In <u>Proceedings of the 8th International Workshop on Parsing</u> Technologies (IWPT 03), pages 55–65, Nancy, France.

Gardent, C., Parmentier, Y., Perrier, G., and Schmitz, S. (2014). Lexical Disambiguation in LTAG using Left Context.

In <u>Human Language Technology.</u> Challenges for Computer Science and Linguistics. 5th Language and Technology Conference, LTC 2011, Poznan, Poland, November 25-27, 2011, Revised Selected Papers, volume 8387 of LNCS/LNAI, pages 67–79. Springer.

Tree adjoining grammars.

In Rozenberg, G. and Salomaa, A., editors, <u>Handbook of Formal</u> Languages. Springer Verlag, Berlin.