The role of prosody for the interpretation of rhetorical questions in German

Jana Neitsch, Marianne Kusterer, Nicole Dehé, Bettina Braun

University of Konstanz, Germany
{jana.neitsch, marianne.kusterer, nicole.dehe, bettina.braun}@uni-konstanz.de

Abstract

Questions can be marked as rhetorical by their prosodic realisation. In two eye-tracking experiments, we tested whether wh-questions can be interpreted as rhetorical (RQ) or information-seeking (ISQ) based on prosody. We manipulated nuclear pitch accent type (late-peak L*+H vs. early-peak H+!H*) and voice quality (breathy vs. modal) and investigated the contribution of the discourse particle denn. Participants had to decide whether they heard an RQ or ISQ by clicking on one of two labels. Experiment 1 presented listeners with wh-questions containing the discourse particle denn. Experiment 2 replicated Experiment 1 without the particle. Results showed that late-peak accent and breathy voice quality led to a rhetorical interpretation, while early-peak accent with modal voice quality was interpreted as information-seeking. The presence of the particle slightly strengthened these interpretations. Listeners decided faster when presented with late-peak/breathy and early-peak/modal compared to the other conditions. Fixation data showed different sensitivity to the prosodic cues depending on the presence of denn. In sum, listeners can use the prosodic realisation of wh-questions to interpret them as rhetorical or not, i.e. contextual-linguistic information and other means (e.g. syntactic or lexical) are not strictly necessary.

Index Terms: rhetorical questions, information-seeking questions, nuclear pitch accent, voice quality, discourse particles, perception, wh-questions, German

1. Introduction

Following [1, 2], information-seeking questions (ISQs) have been described as eliciting information from the addressee, while rhetorical questions (RQs) are usually assumed to imply an answer that is already known (or at least inferable) to all interlocutors [3, 4, 5]. RQs, in contrast to ISQs, thus characteristically exhibit a mismatch between their interrogative form and their function [6, 7, 8].

A rhetorical reading can be signalled lexically, e.g. by strong Negative Polarity Items (e.g. Who lifted a finger to help her?) [6]. In German, discourse particles such as schon and auch are explicitly associated with an RQ interpretation [2], while denn can occur in both illocution types (RQs and ISQs), indicating that it might not bias either one of the two possible readings [9]. However, the potential pragmatic influence of denn on question interpretation has not yet been empirically investigated.

Although RQs have been the subject of semantic and pragmatic investigations for decades, knowledge about their prosody is still scarce. In a first systematic analysis of their prosodic characteristics, [10] compared the realisations of string-identical pairs of polar and string-identical pairs of German wh-questions, where one member of the pair was produced in a rhetorical context, the other in an information-seeking one. Their results for wh-questions showed that L*+H (late-peak) nuclear pitch accents occurred most often in rhetorical contexts, but rarely in information-seeking contexts. On the other hand, ISQs were mostly produced with L+H* and H*. The H+L* early-peak accent occurred predominantly in ISQs and very rarely in RQs. Phonetically, RQs were realised with longer durations of the wh-word and the sentence-final object and with a steeper spectral tilt (stronger amplitude differences between H1 and A3) in the wh-word and the object, indicating a breathier voice quality.

In this paper, we investigate a) whether prosody is sufficient for listeners to identify wh-questions as rhetorical or not, when they are presented out of linguistic context and without lexical markers, b) the effects of nuclear pitch accent type and voice quality on the identification of a wh-question as rhetorical or not, c) whether the particle denn affects the use of these prosodic cues, and d) the time course of interpretation. For comparisons, we used a late-peak (L*+H) and an early-peak (H+!H*) pitch accent. L*+H was the most frequent accent type in productions of RQs; H+!H* was chosen despite not being the most frequent accent type in ISQs because it rarely occurred in RQs and is clearly distinct from L*+H [11, 12]). In Experiment 1, all test sentences contained the particle denn. For Experiment 2, the particle was removed. This allowed us to test the contribution of the particle to question interpretation while keeping the prosodic form of the questions the same.

Based on [10], who identified the L*+H nuclear accent type and breathy voice quality as frequent features of rhetorical wh-questions in production, we predict that both a late-peak nuclear accent and a breathy voice quality increase RQ interpretations. Following [9], we predict that the presence of the particle has little impact on the interpretation of wh-questions as rhetorical or information-seeking.

2. Experiments

Two eye-tracking studies were carried out. Pitch accent type and voice quality were manipulated within-subjects, presence/absence of the particle between-subjects. Participants’ mouse clicks and click latencies were monitored. Additionally, participants’ fixations were tracked.

2.1. Methods

2.1.1. Materials

For Experiment 1, we created 32 wh-questions containing the German discourse particle denn (e.g. Wer mag denn Vanille, 1).

1 Note that following [13], we do not assume two distinct phonological categories for the two types of early-peaks H+!H* and H+L*.
‘Who likes PRT vanilla’). Each question started with the wh-word *wer* (‘who’) followed by a finite verb, the discourse particle *denn* and a sentence-final object (e.g. *Vanille ‘vanilla’*). All final objects were mostly sonorant, consisted of three syllables and carried lexical stress on the penultimate syllable. For each object, we selected a corresponding colour picture (500x500 pixels) on white background.

The questions were audio-recorded by a trained female native speaker in a sound attenuated booth. She first produced each wh-question with a late-peak accent (L*+H) or an early-peak accent (H*+H*) in modal voice quality on the sentence-final object (note that the early-peak accent questions had an additional prenuclear H* accent on the wh-word to make the contour more natural). Based on [10], the final boundary tone was low (L-%). After each modal version, the speaker recorded the question with the same contour but breathy voice quality on the sentence-final object (e.g. *Vanille ‘vanilla’*). This procedure helped to achieve acoustic similarity of global intonation contours between the two realisations with the same accent type in different voice qualities. In some recordings, f0-maxima and minima within the object were slightly lower in breathy voice than in modal voice quality. Therefore, f0-maxima and minima were resynthesised (PSOLA, [14]) to achieve an average scaling across voice quality versions. As shown in the production studies conducted by [10] and [15], rhetorical wh-questions are characterised by significantly longer durations of the overall utterance, the first constituent and the sentence-final object as compared to their information-seeking counterparts. This might be a cue to a rhetorical interpretation. In our recordings, breathy voice versions were also longer than modal voice versions. To avoid potential confounding influences of durational differences, durations for each word were manipulated such that they had the average duration of the modal and breathy recording of that item.

In total, we used 32 wh-questions in four prosodic realisations, i.e. 128 experimental items (32 interrogatives x 4 conditions, see Figure 1 for example contours).

To corroborate the voice quality manipulation acoustically, we extracted spectral tilt (H1*+A3*, following [16]) in the middle of the vowel of the wh-word, and in the stressed vowel of the final object. Results showed no differences in the wh-word (p=0.6), but significantly higher values in the final object of the breathy versions than of the modal ones (32.48dB vs. 28.58dB, p=0.0002; note that a higher value indicates a breathier voice quality).

In Experiment 2, we used the same stimuli as in Experiment 1, but the particle *denn* was cut out without affecting the naturalness of the experimental items.

2.1.2. Participants

Twenty-four native speakers of German participated in each experiment (Experiment 1: Ø=23.7 years, SD=3.2 years, 19 female, Experiment 2: Ø=22.8, SD=2.9, 17 female). They received a small payment and were tested individually.

2.1.3. Procedure

The 128 experimental items were divided into four lists of 32 items each (8 items x 4 conditions) following a Latin Square design (i.e. each participant listened to each experimental condition, but never for the same item). The experimental lists were pseudo-randomised to ensure that no more than two items from the same experimental condition immediately followed one another. Four practice trials were put at the start of each list. Each list was split into two blocks that contained 16 items (four per condition). A second version was created for each list by switching the two blocks in order to control for potential training effects. The experimental lists were the same in both experiments. Participants were randomly assigned to one of the eight experimental lists.

Both experiments followed the same procedure. During the experimental session, participants were seated comfortably in front of an LCD screen. The desktop mounted EyeLink 1000 Plus system was used with head support. Participant’s dominant eye was calibrated (pupil and corneal reflection) and validated prior to the experiment. Participants’ fixations of the dominant eye were tracked and recorded during the experimental session with a sampling rate of 250Hz. An automatic drift correction was conducted after every fifth trial. Each trial started with a fixation cross that appeared for 300ms in the centre of the screen. Then, the picture corresponding to the respective final object was presented on white background for 2500ms (this helped to situate the question, cf. [17, 18, 19]). Following the picture, the two labels *wirkliche Frage* (‘real question’, corresponding to ISQ) and *rhetorische Frage* (‘rhetorical question’, corresponding to RQ) were shown on the screen. The labels were displayed side by side centred on the screen and each was framed by a rectangular box. The position of the labels (left vs. right) was counterbalanced such that a label never occurred in the same position for more than three trials in a row. The presentation of the auditory question started 1000ms after the appearance of the labels. Target sentences were presented over headphones. Participants were asked to indicate whether they had heard an RQ or an ISQ by clicking as quickly as possible on the corresponding label. No feedback was provided. Each experimental session took about 20 minutes.

Participants’ mouse clicks and fixations were coded as pertaining to a particular label if they were directed within the frame of one of the two labels. Click latencies were measured relative to the offset of the acoustic stimuli.

2.2. Results

Per experiment, a total of 768 mouse clicks (24 participants x 32 items) were analysed. Results showed most clicks to the RQ label when wh-questions were produced with a late-peak accent (L*+H) in breathy voice quality (Experiment 1: 93%; Experiment 2: 73%, cf. Figure 2). In both experiments, the percentage of clicks to the RQ label dropped for questions with the same accent type but a modal voice quality. Stimuli with an early-peak accent in modal voice were mostly interpreted as ISQs, i.e. RQ interpretations were lowest in this case.
condition (Experiment 1: 7%; Experiment 2: 13%), whereas breathiness in the same accent type category resulted in increased RQ interpretations. Henceforth, we will use the term prototypical contours to refer to the conditions that resulted in the most distinct interpretations (late-peak in breathy voice for RQ, and early-peak in modal voice for ISQ).

Figure 2: Clicks on the RQ label by accent type (early-peak vs. late-peak) and voice quality. Whiskers indicate SE.

Clicks were statistically analysed by calculating a mixed-effects logistic regression model in RStudio ([20]) with accent type (early-peak vs. late-peak) and voice quality (modal vs. breathy) as fixed factors and subjects and items as crossed random factors, allowing for random adjustments of intercepts [21]. P-values were calculated using the Satterthwaite approximation in the R-package lmerTest [22]. In what follows, values in square brackets indicate the 95% confidence interval of the estimate. Results showed a significant effect of pitch accent type (Experiment 1: $\beta=4.90 \ [4.16; 5.77]$, SE=0.41, $p<0.0001$; Experiment 2: $\beta=1.81 \ [1.44; 2.19]$, SE=0.19, $p<0.0001$) and a significant effect of voice quality (Experiment 1: $\beta=3.35 \ [2.68; 4.12]$, SE=0.37, $p<0.0001$; Experiment 2: $\beta=1.68 \ [1.32; 2.07]$, SE=0.19, $p<0.0001$). There was no interaction between accent type and voice quality (p-values in both experiments >0.6). A three-way interaction between particle, voice quality and accent type revealed that decisions were clearer in Experiment 1 than in Experiment 2 ($p<0.0003$).

For the analysis of click latencies, measurements greater than 2.5SD above the grand mean were excluded (Experiment 1: N = 46, Experiment 2: N=44). Click latencies were lowest for the prototypical contours. Linear mixed-effects regression models of click latencies revealed a significant interaction between accent type and voice quality in each experiments (both p-values <0.0001; cf. Figure 3). Click latencies were generally longer in Experiment 2 than Experiment 1 ($p<0.0003$) but there was no three-way interaction ($p=0.9$).

Figure 4 shows the evolution of fixations to the RQ label. Note that it takes about 150ms to plan a saccade (e.g. [23]). The fixation proportions did not differ during the processing of the wh-word or the verb in either experiment, nor for the particle in Experiment 1.

Figure 4: Evolution of fixation proportions to RQ. Straight vertical lines indicate acoustic landmarks.

In Experiment 1, fixation proportions to the RQ label began to differ in the object region. Starting from around 0.8s after the onset of the object, fixations to the RQ label were higher in the late-peak conditions than in the early-peak conditions, irrespective of voice quality (dashed and solid black lines in
Figure 4, upper plot). To statistically corroborate this observation, fixations were analysed in 0.1s time windows from object onset (cf. [24]) until 1.8s after object onset. Following [25], empirical logits (elogs) were calculated by dividing fixations to the RQ label by fixations directed elsewhere. They were analysed in the same way as click latencies. Results showed a significant effect of accent type, starting at 0.8s after object onset ($\beta=0.66$ [0.15;1.17], SE=0.26, p<0.02). An additional effect of voice quality started at 1.1s after object onset ($\beta=0.54$ [0.07; 1.02], SE=0.24, p<0.03), i.e. after the offset of the object. None of the analysed time windows revealed an interaction between the two variables (all p-values >0.5). Fixations for the prototypical contours started to differ around 0.8s after object onset ($\beta=0.71$ [0.01; 1.41], SE=0.36, p<0.05). This fixation pattern was driven by the processing of the object’s stressed syllable.

For Experiment 2 without denn, all effects occurred after the offset of the object. Ranging from 1.2-1.7s after object onset, there were significantly more fixations to the RQ label in questions with breathy voice ($\beta=0.27$ [0.04; 0.50], SE=0.12, p<0.05; cf. Figure 4, lower plot). An additional effect of accent type started at 1.3s after object onset ($\beta=0.40$ [0.13; 0.68], SE=0.13, p<0.007). There was no interaction between accent type and voice quality in the analysed time windows (all p-values >0.2). Fixation proportions for the prototypical contours started to differ significantly around 1.1s after object onset ($\beta=0.36$ [0.45; 1.87], SE=0.16, p<0.03), i.e. after object offset.

![Figure 5: Summary of effects found for fixations relative to the onset of the object (in s).](image)

To corroborate the differences across experiments, we calculated whether the above effects interacted with experiment. Only at 0.8-0.9s after the onset of the object, there was an interaction between particle and accent type (p<0.02, cf. Figure 5).

3. Discussion

The click data indicate that German wh-questions with a nuclear late-peak accent (L*+H) on the sentence-final object that are produced with a breathy voice quality are reliably interpreted as conveying a rhetorical illocution, while a nuclear early-peak accent (H:+H*) in modal voice quality evokes predominantly information-seeking interpretations. In addition, participants decide faster when they are presented with these prototypical contours compared to one of the other combinations. When breathy voice occurs in early-peak accents and modal voice in late-peak accents, participants not only take longer to click, but are also less confident in their decision. Removing the particle denn from the recordings leads to a similar overall pattern, but with less distinct choices and longer click latencies.

Concerning the online processing of illocutionary force, fixation patterns of Experiment 1 show that listeners do not differ in their fixations to the RQ label early in the utterance, suggesting that the particle denn and the prenuclear H* do not have an impact. Fixations to either label immediately increase once the stressed syllable has been processed, i.e. when nuclear pitch accent and voice quality are available. In contrast, Experiment 2 reveals effects only after the offset of the object. Here, the effect of voice quality sets in before the effect of accent type. The order in which accent type and voice quality are used by listeners in Experiment 2 is thus the reverse of the one we find in Experiment 1.

Fixation data hence indicate differences in the time course of interpretation of the nuclear pitch accent and voice quality, depending on whether there is a particle or not. One explanation for this timing difference is that the intonation contours were not ideal for wh-questions without the particle, which may have confused listeners. After all, the contours were modelled on production data containing a particle. This might explain the slightly earlier effect of voice quality compared to the later effect of accent type in Experiment 2 (see [26] for adaptive perception theories). It should be noted, however, that the identification of illocution type was still rather high in wh-questions without the particle (>70% for RQs and >90% for ISQs). Listeners were thus still able to interpret the prototypical contours characteristic for wh-questions containing a particle when confronted with wh-questions with a different syntactical structure (i.e. no particle). Admittedly though, more effort was necessary for identification. In a future production experiment, we will therefore investigate how wh-questions (RQs and ISQs) without the particle denn are realised.

Note that click latencies were comparatively long in both experiments, suggesting that the task was rather difficult. In future experiments, we will compare decision times for RQ and ISQ interpretations for less ambiguous linguistic structures to investigate whether RQ and ISQ judgments are difficult per se or whether the difficulty arose from the interpretation of prosody.

4. Summary and Conclusion

Primarily, the current data show that specific prosodic characteristics alone are sufficient for the interpretation of German wh-questions as rhetorical or information-seeking. Linguistic context and specific lexical markers such as polarity items or specialised particles indicating illocution type are not necessary. Specifically, wh-questions with a late-peak nuclear accent in breathy voice are reliably identified as RQs, while wh-questions with an early-peak nuclear accent in modal voice quality are reliably identified as ISQs. The data without particle show less distinct interpretations and longer click latencies. The online eye-tracking data furthermore revealed that participants primarily relied on pitch accent type when the particle was present and earlier on voice quality information when the particle was removed. This suggests that, although the prototypical contours are ultimately interpreted in more or less the same way in both Experiments, the path to this decision differs.

5. Acknowledgements

This research was supported by a project grant from the German Research Council (DFG), awarded to the last two authors. We thank Maria Bizma for discussion on the pragmatics of rhetorical questions and Katharina Zahner for support with data analysis.
6. References

